Support Vector Machines using Multi Objective Linear Programming
نویسندگان
چکیده
منابع مشابه
Linear programming support vector machines
Based on the analysis of the conclusions in the statistical learning theory, especially the VC dimension of linear functions, linear programming support vector machines (or SVMs) are presented including linear programming linear and nonlinear SVMs. In linear programming SVMs, in order to improve the speed of the training time, the bound of the VC dimension is loosened properly. Simulation resul...
متن کاملMulti-Objective Optimization of Support Vector Machines
Designing supervised learning systems is in general a multi-objective optimization problem. It requires finding appropriate trade-offs between several objectives, for example between model complexity and accuracy or sensitivity and specificity. We consider the adaptation of kernel and regularization parameters of support vector machines (SVMs) by means of multi-objective evolutionary optimizati...
متن کاملSemiparametric Support Vector and Linear Programming Machines
Semiparametric models are useful tools in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. We extend two learning algorithms Support Vector machines and Linear Programming machines to this case and give experimental results for SV machines.
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملDeep Learning using Linear Support Vector Machines
Recently, fully-connected and convolutional neural networks have been trained to achieve state-of-the-art performance on a wide variety of tasks such as speech recognition, image classification, natural language processing, and bioinformatics. For classification tasks, most of these “deep learning” models employ the softmax activation function for prediction and minimize cross-entropy loss. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 2003
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.16.70